Clinical chemistries of small mammals

Terry W. Campbell, DVM, PhD
Zoological Medicine
Colorado State University

The content of this presentation does not relate to any product of a commercial interest; therefore, there are no relevant financial relationship to disclose.

Clinical chemistries

- In general, interpretation of biochemical profiles in small mammals and non-domestics is the same as for the common domestic mammals.
Blood sampling considerations

- Small sample size
 - 1% of the body weight
- Collect in lithium heparin
- Rats
 - 16 hr fast needed to obtain a non-lipemic plasma sample
- Rabbits
 - 16 hr fast results in hypoglycemia

Blood sampling considerations

- Blood collected via cardiocentesis
 - Contaminated with muscle enzymes
 - CK, AST, LD, ALT
- Mice
 - Orbital sinus blood
 - Higher plasma calcium

Rodents

- Laboratory evaluation of kidney
 - Same as domestic mammals
 - BUN
 - Creatinine
 - Electrolytes
 - Urinalysis
BUN in rodents

- Plasma urea nitrogen concentration is influenced by
 - Diet
 - Liver function
 - Gastrointestinal absorption
 - Hydration
 - Renal function

Increases in BUN

- When greater than 75% of renal function is compromised
 - Test lacks sensitivity for renal disease
 - High protein diets
 - Increased nitrogen metabolism rather than renal disease

Other laboratory abnormalities with renal disease

- Hyperphosphatemia
 - Decreased glomerular filtration
- Hypoproteinemia
 - Glomerular disease
 - Urinary protein loss
- Increased creatinine
 - Decreased glomerular filtration
Enzymes with high kidney tissue activity

- Gamma-glutamyltransferase
- N-acetyl-β-D-glucosaminidase
- Alkaline phosphatase (AP)

- Measurement of these in urine may improve the sensitivity of clinical chemical testing for renal disease in rodents

Creatinine clearance in rodents

- Testing of endogenous creatinine clearance
 - May provide a specific and sensitive test for decreased glomerular filtration
 - Before plasma urea nitrogen and creatinine concentrations are increased

Renal azotemia in rodents

- Common causes
 - Amyloidosis
 - Immune complex disease
 - Polycystic disease

- Age-related increases in BUN
Urinalysis in rodents
- Often spontaneously urinate when handled
 - Clean sample
- Cystocentesis
 - Eliminates artifact
 - May have blood contamination
- Perform urinalysis within 2 hours of collection
 - Urine may be refrigerated at 4°C up to 48 hours
 - Refrigerated urine
 - Warm to room temperature before testing

Urinalysis of rodents
- pH is influenced by diet
- Acidic urine
 - Catabolic conditions
 - Starvation
 - Ketosis
 - Fever

Urinalysis of rodents
- Specific gravity and osmolality
 - Evaluate kidney’s ability to concentrate or dilute urine
 - Water-deprivation test
 - Withhold water for 24 hr
 - Specific gravity >1.030 is normal
 - Osmolality is the definitive method
 - Rat urine: 331 - 445 mOsm/kg is normal
 - Hamster urine: 307 - 355 mOsm/Kg is normal
Urinalysis of rodents

- Normal trace glucose
- False-negative results
- Ascorbic acid in urine
- Proteinuria is common
 - Variety of normal urine proteins
 - Increases with age
 - Males tend to be more proteinuric than females

Urinalysis of rodents

- Urine sediment
 - < 5 rbc/ hpf
 - < 5 wbc/ hpf

Rodent: liver evaluation

- Same as domestic mammals
- Enzymes
 - AP, GGT, AST, ALT, LD, SD
 - ALT is liver-specific in rats
 - ALT is not useful in guinea pigs
- Bilirubin
- Bile acids
- Cholesterol
Alkaline phosphatase

- A membrane-bound enzyme
- Highest activity in
 - Osteoblasts
 - Biliary epithelium
 - Epithelial cells of kidneys and intestines

Increased serum or plasma AP activity in rodents

- Hepatic cholestasis
 - Ligation of the bile duct in rats
 - Elevation of both hepatic and intestinal AP isoenzymes
 - More sensitive test than bilirubin or ALT for detection of hepatic disease in hamsters

Increased serum or plasma AP activity in rodents

- Drugs that increase AP synthesis and plasma activity in rats
 - Cortisol
 - Phenobarbital
 - Theophylline
Plasma GGT activity in rodents

- Experimentally induced hepatic injury resulting in cholestasis
 - Increased plasma GGT in hamsters and rats

- Guinea pigs have higher hepatic GGT activity than rats
 - Higher plasma GGT activities with cholestasis
 - Increased serum GGT activity in guinea pigs after in vitro blood clot formation
 - Avoided with use of plasma for enzyme testing

High GGT activity in kidneys of rodents

- The kidneys of rats have 200- to 300-fold the GGT activity of the liver
- Not detectable in the plasma or serum of most rodents
Aspartate aminotransferase (AST)
- Mitochondrial and cytosolic enzyme
- High activity in:
 - Liver
 - Heart
 - Skeletal muscle
 - Kidney
- Low activity in:
 - Intestines
 - Brain
 - Lung
 - Testes
- Increases in plasma or serum AST activity
 - Hepatic injury
 - Cardiac muscle injury
 - Skeletal muscle injury

Alanine aminotransferase (ALT)
- Cytosolic and mitochondrial isoenzymes
- ALT activity in rodents
 - Intestines
 - Kidneys
 - Heart and skeletal muscle
 - Brain
 - Skin
 - Pancreas
Alanine aminotransferase (ALT)

- Rats and mice
 - Highest activity in the liver
- Cytosolic to mitochondrial ratio of ALT isoenzymes in rats
 - Liver is 5:1
 - Heart muscle 50:1
- Guinea pig ALT activity
 - Heart is equal to liver

Increased plasma and serum ALT activity

- Hepatocellular damage in most rodents
- Liver specific in rats and mice
- No diagnostic value for hepatic disease in guinea pigs
 - Have only half the hepatic ALT activity of rats and mice
- Increases in serum ALT activity correlate with the degree of hepatic necrosis in rats
- A threefold increase in plasma ALT activity occurs in mice restrained by holding the body compared to the tail

Lactate dehydrogenase (LD)

- Cytosolic enzyme
- Highest activity in skeletal muscle
 - Cardiac muscle
 - Liver
 - Kidney
 - Intestines
- Five isoenzymes in mouse
 - LD-1 and LD-2 in cardiac muscle
 - LD-5 in the liver and skeletal muscle
 - LD-3 in most other tissues
Lactate dehydrogenase (LD)
- Elevated serum or plasma LD activity
 - Hepatocellular disease in rodents
 - Normal values are highly variable
 - Depend on the analytic method used

Sorbitol dehydrogenase (SD)
- Cytosolic enzyme
- Mice
 - Liver
 - Kidney
 - Seminal vesicles
- Liver specific in rats

Sorbitol dehydrogenase (SD)
- Increases in serum or plasma
 - Hepatic disease in rodents
 - More sensitive test than ALT for detection of hepatocellular disease in rats
- Usually not offered by veterinary laboratories
Increased serum and plasma total bilirubin in rodents

- Hepatobiliary disease
- Extra-hepatic biliary obstruction
- Hemolysis

Total serum and plasma bile acid concentration

- Sensitive and specific test for hepatobiliary disease
- Disorders of the enterohepatic circulation
- Excellent potential for detecting hepatobiliary disease in rodents
 - Especially rats with a high concentration of circulating bile acids

Plasma cholesterol concentration

- Increases in rodents with extrahepatic biliary obstruction
- Mice
 - Normal plasma cholesterol concentration varies between strains
- Hypercholesterolemia often is associated with fatty infiltration of many tissues
- Guinea pigs
 - Intestine not liver is primary site of cholesterol production
Normal plasma cholesterol concentration of hamsters

- 112-210 mg/dL or 2.90 - 5.43 mmol/L
- Higher than that of other rodents
- Decreases during short photoperiods
- Increases with cold temperatures

Rabbits

- Kidney evaluation
 - Urea and creatinine
 - Requires 50 to 75 % loss of function

Rabbits

- Renal failure often associated with increased
 - BUN
 - Creatinine
 - Calcium
 - Phosphorus
 - Potassium concentrations
Rabbits
- Renal failure may exhibit
 - Isothienuria
 - Nephritis
 - Proteinuria
 - Ketonuria
 - Pyuria
 - Cast formation

Rabbits: Calcium
- Normal: 13 - 15 mg/dl
- Mean urinary fractional calcium excretion is 45%
 - Note: less than 2% in other mammals

Rabbits
- Liver evaluation
 - ALT, AST, LD, AP, GGT
 - Plasma ALT is liver-specific
 - Normal plasma ALT is less than half of that of the dog
 - Bilirubin
 - Cholesterol
Rabbits: Liver evaluation

- Marked increase in plasma bilirubin
 - Biliary obstruction

Rabbit alkaline phosphatase

- 3 AP isoenzymes
 - 1 intestinal form
 - 2 liver/kidney forms
 - Major form similar to intestinal form of other mammals
 - Minor form is similar to liver/kidney/bone form of other mammals

Rabbit cholesterol

- May increase with extrahepatic biliary obstruction
- Rabbits used for cholesterol metabolism research
 - Rapidly develop cholesterolemia with high-cholesterol diets
Ferrets

- **Kidney evaluation**
 - BUN, creatinine, protein, electrolytes, urinalysis
 - Normal ferrets and those with azotemia
 - Lower creatinine than dogs and cats

Ferrets

- **Liver evaluation**
 - Same as dogs and cats
 - ALT is a sensitive and specific test for hepatocellular disease in ferrets

Ferrets: Glucose

- 4- to 5-hour fasting plasma glucose
 - < 60 mg/dL (3.33 mmol/L): presumptive diagnosis of insulinoma
 - 60 - 90 mg/dL (3.33-5.0 mmol/L) merely suggestive
 - > 90 mg/dL (5.0 mmol/L) are normal
Ferrets: Insulinoma

- Normal serum immune-reactive insulin
 - 4.6 to 43.3 µU/mL (SI units, 33-311 pmol/L)

- Normal insulin: glucose ratio
 - 3.6 to 34.1 µU/mg (SI units, 4.6-44.2 pmol/mmol)

- Results may vary among laboratories

Ferrets: Insulinoma

- Amended insulin:glucose ratio (AIGR)
 - Insulin (µU/mL) x 100/fasting glucose (mg/dL) - 30
 - > 30 suggestive of hyperinsulinism
 - Rarely used

Ferrets: other caused for hypoglycemia

- Delayed separation of plasma from erythrocytes
- Starvation
- Chronic hepatic disease
- Septicemia
- Endotoxemia